evire
  • ⚪EVIRE
  • INTRODUCTION
    • ▪️Key Features and Capabilities
    • ▪️High-Level Architecture
    • ▪️Roadmap
    • ▪️Finances
    • ▪️Licensing
    • ▪️Tokenomics
      • EVIRE ERC20 token
      • Token Vesting
    • ▪️Audit
  • Core Concepts
    • ▪️Blockchain Basics
    • ▪️Ethereum Virtual Machine (EVM)
    • ▪️Smart Contracts and Decentralized Applications
  • TESTNET
    • Adding Evire Testnet to Metamask
    • Using the Evire Faucet
  • FRAMEWORKS AND NATIVE FUNCTIONS
    • ▪️Overview
  • AI Framework
    • ▪️Smart Contract Libraries for AI
      • Example: Data Preprocessing Libraries
      • Example: Model Execution and Management Library
    • ▪️Off-Chain Compute Framework
      • Example: AI-Powered Predictive Analytics dApp
      • Example: Off-Chain Computation Request Handling
    • ▪️Decentralized Storage Integration
      • Example: Data Linking via Smart Contracts
      • Example: On-Demand Data Retrieval Implementation
    • ▪️Oracles for Real-Time Data
      • Example: Real-Time Data Fetching Oracle for Financial Models
    • ▪️Model Training and Deployment Tools
      • Example: AI Model Deployment
    • ▪️AI-Specific Governance Protocols
      • Example: AI Governance Smart Contract for Bias Audit and Consensus Decision
    • ▪️User-Friendly Developer Interfaces
    • ▪️Privacy Tools and Standards
  • Gaming Framework
    • ▪️Specialized Gaming Smart Contract Libraries
      • Example: Secure and Fair Random Number Generation Library
      • Example: Asset Trading Library
      • Example: Game State Management Library
      • Example: Evire Player Stats Library
    • ▪️Scalable and Efficient Consensus Mechanisms
    • ▪️Interoperability Features
    • ▪️Robust Developer Tooling
    • ▪️User-Friendly SDKs and APIs
    • ▪️Regulatory Compliance Tools
    • ▪️Flexible Asset Management
  • RWA Framework
    • ▪️Identity Verification and Management Libraries
      • Example: Identity Verification Library
    • ▪️Oracles and Data Feeds
    • ▪️Asset Tokenization Frameworks
      • Example: Real Estate Tokenization Library
    • ▪️Legal Compliance and Smart Contract Auditing Tools
    • ▪️Interoperability Solutions
    • ▪️Privacy Enhancements
    • ▪️DeFi Integration Tools
    • ▪️User-Friendly Interfaces and SDKs
    • ▪️Governance Frameworks
    • ▪️Customizable Smart Contract Templates
  • DePIN Framework
    • ▪️Smart Contract Libraries
      • Example: Physical Infrastructure Management Library
    • ▪️Oracles Integration
    • ▪️IoT Integration Framework
    • ▪️Interoperability Protocols
    • ▪️Developer Tooling
    • ▪️User Interface Components
    • ▪️Security Auditing Tools
    • ▪️Governance and Compliance Frameworks
      • Example: Governance And Compliance Library
    • ▪️Tokenization Support
    • ▪️Documentation and Community Support
  • EXAMPLES
    • ▪️AI Framework
    • ▪️Gaming Framework
    • ▪️RWA Framework
    • ▪️DePIN Framework
  • Legal
    • ▪️Terms and Conditions of Participation
  • More
    • ▪️Faucet
    • ▪️Partners
    • ▪️Contribute
  • Links
    • ▪️Website
    • ▪️Twitter
    • ▪️Telegram
    • ▪️GitHub
    • ▪️Medium
    • ▪️Linktree
    • ◾DeBank
Powered by GitBook
On this page
  1. Core Concepts

Smart Contracts and Decentralized Applications

Decentralized Applications (dApps) are applications that run on a peer-to-peer network of computers rather than a single computer. dApps use blockchain technology and smart contracts to create a decentralized network that is not controlled by any single entity. These applications are often open-source, operate autonomously and a majority of them offer some form of token to incentivize network participants. dApps can be developed for various uses such as gaming, finance, social media, and more, with the underlying principle that they operate on a decentralized network providing users with greater control and security over their data compared to traditional applications. The decentralized nature of these apps means they are resistant to censorship and downtime, as they do not rely on a single point of control or failure.

Smart contracts are self-executing contracts with the terms of the agreement directly written into code. They automatically enforce and execute the terms of a contract when predefined conditions are met, without the need for intermediaries. This automation ensures that transactions and agreements are carried out transparently, securely, and efficiently. Smart contracts are immutable once deployed, meaning their code cannot be changed, which guarantees that the rules and conditions set forth will be followed without manipulation. They play a crucial role in the functionality of dApps, enabling complex applications such as decentralized finance (DeFi) protocols, NFT marketplaces, and more, by ensuring trust and reducing the need for traditional third-party verification.

PreviousEthereum Virtual Machine (EVM)NextAdding Evire Testnet to Metamask

Last updated 11 months ago

▪️