Ensures data used in AI models is clean, formatted correctly, and ready for analysis.
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;libraryDataNormalization {// Function to normalize data within a specific range function normalize(uint256[] memory data, uint256 minRange, uint256 maxRange) internal pure returns (uint256[] memory) {
uint256[] memory normalizedData =newuint256[](data.length);uint256 min = data[0];uint256 max = data[0];// Find the min and max values in the data arrayfor (uint i =1; i < data.length; i++) {if (data[i] < min) { min = data[i]; }if (data[i] > max) { max = data[i]; } }// Normalize the datafor (uint i =0; i < data.length; i++) { normalizedData[i] = ((data[i] - min) * (maxRange - minRange)) / (max - min) + minRange; }return normalizedData; }}
DataTransformation Library
Handles data transformation tasks like encoding categorical data and standardizing datasets.
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;libraryDataTransformation {// Function to encode categorical data to numerical valuesfunctionencodeCategorical(string[] memory categories) internalpurereturns (uint256[] memory) {uint256[] memory encodedData =newuint256[](categories.length);for (uint i =0; i < categories.length; i++) { encodedData[i] =uint256(keccak256(abi.encodePacked(categories[i]))); }return encodedData; }// Function to standardize data to have zero mean and unit variancefunctionstandardize(uint256[] memory data) internalpurereturns (int256[] memory) {int256[] memory standardizedData =newint256[](data.length);int256 mean =0;int256 variance =0;// Calculate the meanfor (uint i =0; i < data.length; i++) { mean +=int256(data[i]); } mean /=int256(data.length);// Calculate the variancefor (uint i =0; i < data.length; i++) { variance += (int256(data[i]) - mean) * (int256(data[i]) - mean); } variance /=int256(data.length);// Standardize the datafor (uint i =0; i < data.length; i++) { standardizedData[i] = (int256(data[i]) - mean) * 1e18 / sqrt(variance); // Multiplying by 1e18 to retain precision
}return standardizedData; }// Helper function to calculate square root (Babylonian method)functionsqrt(int256 x) internalpurereturns (int256 y) {int256 z = (x +1) /2; y = x;while (z < y) { y = z; z = (x / z + z) /2; } }}
Example of usage
Here's a smart contract example that integrates the DataNormalization and DataTransformation libraries within a use case that manages tokenized assets, incorporating data normalization and transformation for AI model predictions in asset management.
The DataNormalization and DataTransformation libraries are imported and used in the contract.
The contract allows the owner to add assets with a name, value, and historical data.
The normalizeAssetData function normalizes historical data within a specified range.
The encodeAssetName function encodes the asset name using categorical encoding.
The standardizeAssetData function standardizes the historical data to have zero mean and unit variance.
Events are emitted to log the actions performed on assets for transparency and traceability.
This contract demonstrates how to integrate data processing functionalities into a smart contract managing tokenized assets, enabling advanced data operations essential for AI-driven asset management and analysis.