Example: Data Preprocessing Libraries
- DataNormalization Library 
Ensures data used in AI models is clean, formatted correctly, and ready for analysis.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library DataNormalization {
    
    // Function to normalize data within a specific range
    function normalize(uint256[] memory data, uint256 minRange, uint256 maxRange) internal pure returns (uint256[] memory) {
        uint256[] memory normalizedData = new uint256[](data.length);
        uint256 min = data[0];
        uint256 max = data[0];
        
        // Find the min and max values in the data array
        for (uint i = 1; i < data.length; i++) {
            if (data[i] < min) {
                min = data[i];
            }
            if (data[i] > max) {
                max = data[i];
            }
        }
        
        // Normalize the data
        for (uint i = 0; i < data.length; i++) {
            normalizedData[i] = ((data[i] - min) * (maxRange - minRange)) / (max - min) + minRange;
        }
        
        return normalizedData;
    }
}- DataTransformation Library 
Handles data transformation tasks like encoding categorical data and standardizing datasets.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library DataTransformation {
    
    // Function to encode categorical data to numerical values
    function encodeCategorical(string[] memory categories) internal pure returns (uint256[] memory) {
        uint256[] memory encodedData = new uint256[](categories.length);
        for (uint i = 0; i < categories.length; i++) {
            encodedData[i] = uint256(keccak256(abi.encodePacked(categories[i])));
        }
        return encodedData;
    }
    // Function to standardize data to have zero mean and unit variance
    function standardize(uint256[] memory data) internal pure returns (int256[] memory) {
        int256[] memory standardizedData = new int256[](data.length);
        int256 mean = 0;
        int256 variance = 0;
        
        // Calculate the mean
        for (uint i = 0; i < data.length; i++) {
            mean += int256(data[i]);
        }
        mean /= int256(data.length);
        
        // Calculate the variance
        for (uint i = 0; i < data.length; i++) {
            variance += (int256(data[i]) - mean) * (int256(data[i]) - mean);
        }
        variance /= int256(data.length);
        
        // Standardize the data
        for (uint i = 0; i < data.length; i++) {
            standardizedData[i] = (int256(data[i]) - mean) * 1e18 / sqrt(variance); // Multiplying by 1e18 to retain precision
        }
        
        return standardizedData;
    }
    
    // Helper function to calculate square root (Babylonian method)
    function sqrt(int256 x) internal pure returns (int256 y) {
        int256 z = (x + 1) / 2;
        y = x;
        while (z < y) {
            y = z;
            z = (x / z + z) / 2;
        }
    }
}Example of usage
Here's a smart contract example that integrates the DataNormalization and DataTransformation libraries within a use case that manages tokenized assets, incorporating data normalization and transformation for AI model predictions in asset management.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./DataNormalization.sol";
import "./DataTransformation.sol";
contract AssetManagement {
    using DataNormalization for uint256[];
    using DataTransformation for string[];
    using DataTransformation for uint256[];
    struct Asset {
        uint256 id;
        string name;
        uint256 value;
        uint256[] historicalData;
    }
    mapping(uint256 => Asset) public assets;
    uint256 public nextAssetId;
    address public owner;
    event AssetAdded(uint256 assetId, string name, uint256 value);
    event DataNormalized(uint256 assetId, uint256[] normalizedData);
    event DataEncoded(uint256 assetId, uint256[] encodedData);
    event DataStandardized(uint256 assetId, int256[] standardizedData);
    modifier onlyOwner() {
        require(msg.sender == owner, "Only owner can perform this action");
        _;
    }
    constructor() {
        owner = msg.sender;
    }
    function addAsset(string memory name, uint256 value, uint256[] memory historicalData) public onlyOwner {
        assets[nextAssetId] = Asset(nextAssetId, name, value, historicalData);
        emit AssetAdded(nextAssetId, name, value);
        nextAssetId++;
    }
    function normalizeAssetData(uint256 assetId, uint256 minRange, uint256 maxRange) public onlyOwner {
        Asset storage asset = assets[assetId];
        uint256[] memory normalizedData = asset.historicalData.normalize(minRange, maxRange);
        emit DataNormalized(assetId, normalizedData);
    }
    function encodeAssetName(uint256 assetId) public onlyOwner {
        Asset storage asset = assets[assetId];
        string[] memory names = new string[](1);
        names[0] = asset.name;
        uint256[] memory encodedData = names.encodeCategorical();
        emit DataEncoded(assetId, encodedData);
    }
    function standardizeAssetData(uint256 assetId) public onlyOwner {
        Asset storage asset = assets[assetId];
        int256[] memory standardizedData = asset.historicalData.standardize();
        emit DataStandardized(assetId, standardizedData);
    }
}Explanation
- The - DataNormalizationand- DataTransformationlibraries are imported and used in the contract.
- The contract allows the owner to add assets with a name, value, and historical data. 
- The - normalizeAssetDatafunction normalizes historical data within a specified range.
- The - encodeAssetNamefunction encodes the asset name using categorical encoding.
- The - standardizeAssetDatafunction standardizes the historical data to have zero mean and unit variance.
- Events are emitted to log the actions performed on assets for transparency and traceability. 
This contract demonstrates how to integrate data processing functionalities into a smart contract managing tokenized assets, enabling advanced data operations essential for AI-driven asset management and analysis.
Last updated
