Example: Data Preprocessing Libraries

  1. DataNormalization Library

Ensures data used in AI models is clean, formatted correctly, and ready for analysis.

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

library DataNormalization {
    
    // Function to normalize data within a specific range
    function normalize(uint256[] memory data, uint256 minRange, uint256 maxRange) internal pure returns (uint256[] memory) {
        uint256[] memory normalizedData = new uint256[](data.length);
        uint256 min = data[0];
        uint256 max = data[0];
        
        // Find the min and max values in the data array
        for (uint i = 1; i < data.length; i++) {
            if (data[i] < min) {
                min = data[i];
            }
            if (data[i] > max) {
                max = data[i];
            }
        }
        
        // Normalize the data
        for (uint i = 0; i < data.length; i++) {
            normalizedData[i] = ((data[i] - min) * (maxRange - minRange)) / (max - min) + minRange;
        }
        
        return normalizedData;
    }
}
  1. DataTransformation Library

Handles data transformation tasks like encoding categorical data and standardizing datasets.

Example of usage

Here's a smart contract example that integrates the DataNormalization and DataTransformation libraries within a use case that manages tokenized assets, incorporating data normalization and transformation for AI model predictions in asset management.

Explanation

  1. The DataNormalization and DataTransformation libraries are imported and used in the contract.

  2. The contract allows the owner to add assets with a name, value, and historical data.

  3. The normalizeAssetData function normalizes historical data within a specified range.

  4. The encodeAssetName function encodes the asset name using categorical encoding.

  5. The standardizeAssetData function standardizes the historical data to have zero mean and unit variance.

  6. Events are emitted to log the actions performed on assets for transparency and traceability.

This contract demonstrates how to integrate data processing functionalities into a smart contract managing tokenized assets, enabling advanced data operations essential for AI-driven asset management and analysis.

Last updated