Next, we configure the off-chain compute nodes to listen for new tasks, perform the computations, and submit the results back to the smart contract.
import requestsfrom web3 import Web3# Initialize web3w3 =Web3(Web3.HTTPProvider('https://your-eth-node-url'))# Contract ABI and addresscontract_abi ='[...]'# Replace with actual ABIcontract_address ='0xYourContractAddress'# Load the contractcontract = w3.eth.contract(address=contract_address, abi=contract_abi)# Function to listen for new tasksdeflisten_for_tasks(): event_filter = contract.events.TaskCreated.createFilter(fromBlock='latest')whileTrue:for event in event_filter.get_new_entries():handle_task_event(event)defhandle_task_event(event): task_id = event['args']['id'] data_hash = event['args']['dataHash'] model_type = event['args']['modelType']# Fetch data and perform computation (mock example) result =perform_ai_computation(data_hash, model_type)# Submit result back to the contractsubmit_result(task_id, result)defperform_ai_computation(data_hash,model_type):# Simulate AI computation (replace with actual model execution) result_hash ="computed_result_hash_based_on_"+ data_hashreturn result_hashdefsubmit_result(task_id,result_hash): tx = contract.functions.completeTask(task_id, result_hash).buildTransaction({'from': w3.eth.defaultAccount,'nonce': w3.eth.getTransactionCount(w3.eth.defaultAccount) }) signed_tx = w3.eth.account.signTransaction(tx, private_key='your_private_key') w3.eth.sendRawTransaction(signed_tx.rawTransaction)if__name__=="__main__":listen_for_tasks()
Load Balancing and Incentive Mechanism
We ensure that tasks are efficiently distributed among compute nodes and that nodes are incentivized based on performance.
import randomfrom queue import PriorityQueue# Priority queue to manage compute node loadcompute_nodes =PriorityQueue()# Register compute nodesdefregister_node(node_address,compute_power): compute_nodes.put((compute_power, node_address))# Assign task to the node with highest compute power availabledefassign_task_to_node(task_id,data_hash,model_type):ifnot compute_nodes.empty(): compute_power, node_address = compute_nodes.get()# Send task details to the selected node response = requests.post(f"http://{node_address}/perform_task", json={'task_id': task_id,'data_hash': data_hash,'model_type': model_type })# Reinsert node into queue with updated compute power (mock logic) new_compute_power =max(0, compute_power - random.randint(1, 10))# Ensure compute power doesn't go negative compute_nodes.put((new_compute_power, node_address))return response.json()else:print("No compute nodes available")returnNone
Security Audits and Compliance
Regular audits and compliance checks are crucial to maintain trust and security in the framework.
This example provides a full lifecycle from task creation, off-chain computation, result submission, load balancing, and security auditing within the Evire Off-Chain Compute Framework. By leveraging smart contracts, decentralized compute nodes, and robust security measures, developers can efficiently handle complex AI tasks off-chain while maintaining blockchain integrity and trust .