Example: AI-Powered Predictive Analytics dApp
Smart Contract for Task Submission
First, we need a smart contract that allows users to submit AI computation tasks.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
contract AIComputeTask {
uint public taskCount = 0;
struct Task {
uint id;
address requester;
string dataHash;
string modelType;
uint reward;
bool completed;
string resultHash;
}
mapping(uint => Task) public tasks;
event TaskCreated(uint id, address requester, string dataHash, string modelType, uint reward);
event TaskCompleted(uint id, string resultHash);
function createTask(string memory dataHash, string memory modelType) public payable {
require(msg.value > 0, "Reward must be greater than zero");
taskCount++;
tasks[taskCount] = Task(taskCount, msg.sender, dataHash, modelType, msg.value, false, "");
emit TaskCreated(taskCount, msg.sender, dataHash, modelType, msg.value);
}
function completeTask(uint taskId, string memory resultHash) public {
Task storage task = tasks[taskId];
require(task.id == taskId, "Task does not exist");
require(!task.completed, "Task already completed");
task.completed = true;
task.resultHash = resultHash;
payable(msg.sender).transfer(task.reward);
emit TaskCompleted(taskId, resultHash);
}
}
Off-Chain Compute Node Setup
Next, we configure the off-chain compute nodes to listen for new tasks, perform the computations, and submit the results back to the smart contract.
import requests
from web3 import Web3
# Initialize web3
w3 = Web3(Web3.HTTPProvider('https://your-eth-node-url'))
# Contract ABI and address
contract_abi = '[...]' # Replace with actual ABI
contract_address = '0xYourContractAddress'
# Load the contract
contract = w3.eth.contract(address=contract_address, abi=contract_abi)
# Function to listen for new tasks
def listen_for_tasks():
event_filter = contract.events.TaskCreated.createFilter(fromBlock='latest')
while True:
for event in event_filter.get_new_entries():
handle_task_event(event)
def handle_task_event(event):
task_id = event['args']['id']
data_hash = event['args']['dataHash']
model_type = event['args']['modelType']
# Fetch data and perform computation (mock example)
result = perform_ai_computation(data_hash, model_type)
# Submit result back to the contract
submit_result(task_id, result)
def perform_ai_computation(data_hash, model_type):
# Simulate AI computation (replace with actual model execution)
result_hash = "computed_result_hash_based_on_" + data_hash
return result_hash
def submit_result(task_id, result_hash):
tx = contract.functions.completeTask(task_id, result_hash).buildTransaction({
'from': w3.eth.defaultAccount,
'nonce': w3.eth.getTransactionCount(w3.eth.defaultAccount)
})
signed_tx = w3.eth.account.signTransaction(tx, private_key='your_private_key')
w3.eth.sendRawTransaction(signed_tx.rawTransaction)
if __name__ == "__main__":
listen_for_tasks()
Load Balancing and Incentive Mechanism
We ensure that tasks are efficiently distributed among compute nodes and that nodes are incentivized based on performance.
import random
from queue import PriorityQueue
# Priority queue to manage compute node load
compute_nodes = PriorityQueue()
# Register compute nodes
def register_node(node_address, compute_power):
compute_nodes.put((compute_power, node_address))
# Assign task to the node with highest compute power available
def assign_task_to_node(task_id, data_hash, model_type):
if not compute_nodes.empty():
compute_power, node_address = compute_nodes.get()
# Send task details to the selected node
response = requests.post(f"http://{node_address}/perform_task", json={
'task_id': task_id,
'data_hash': data_hash,
'model_type': model_type
})
# Reinsert node into queue with updated compute power (mock logic)
new_compute_power = max(0, compute_power - random.randint(1, 10)) # Ensure compute power doesn't go negative
compute_nodes.put((new_compute_power, node_address))
return response.json()
else:
print("No compute nodes available")
return None
Security Audits and Compliance
Regular audits and compliance checks are crucial to maintain trust and security in the framework.
import hashlib
def perform_security_audit(task_id, data_hash, result_hash):
# Verify data integrity (mock logic)
expected_result_hash = hashlib.sha256(data_hash.encode()).hexdigest()
if expected_result_hash == result_hash:
print(f"Task {task_id} passed security audit")
return True
else:
print(f"Task {task_id} failed security audit")
return False
# Example usage
task_id = 1
data_hash = "example_data_hash"
result_hash = perform_ai_computation(data_hash, "example_model")
if perform_security_audit(task_id, data_hash, result_hash):
submit_result(task_id, result_hash)
This example provides a full lifecycle from task creation, off-chain computation, result submission, load balancing, and security auditing within the Evire Off-Chain Compute Framework. By leveraging smart contracts, decentralized compute nodes, and robust security measures, developers can efficiently handle complex AI tasks off-chain while maintaining blockchain integrity and trust .
Last updated